ON CIRCULAR DESIGN WITH 3 AND 4 PLOT BLOCKS

By A. S. Chopra and M. N. Das

I.A.R.S., New Delhi

1. Introduction

Circular designs were first defiñed by Das (1960). A circular design with v trealments in blocks of size k can be obtained by slightly modifying his definition, i.e., by developing the initial block, $1,1+d, \cdots$ $1+(k-1) d, \bmod (v)$ where d is any number prime to v. As the efficiency of a design does not depend on d, the value of d will be taken as 1 and this will simplify the construction and analysis of the design. For example, if $k=3$ the design will have $b(=v)$ blocks each of size 3, each treatment replicated 3 times. These designs have the special advantage that they are available for any number of varieties and do not involve any problem of construction (Kempthorne, 1952). As it has been indicated by Das (1960), these designs are partially balanced incomplete block design with $(v-1) / 2$ or $y / 2$ associate classes according as v is odd or even. Evidently the analysis of these designs following the method of P.B.I.B. designs (Bose, 1939 and Rao, 1947) will be very complicated due to yery large number of associate classes. But Das has shown that the normal equations corresponding to these designs can be solved without much inconvenience, as the number of normal equations can be reduced to $(k-1)$ equations, whatever y may be. Though he indicated in a general way the method of analysis for any k, specific results were given by him only in the case of $k=2$. When $k=3$, he indicated that suitable tables have to be prepared by consulting which the solutions of the equations can be obtained. In the present paper the complete analysis of designs with $k=3$ and 4 have been presented together with the preparation of necessary tables. Moreover, it has been shown that by modifying the definition of such designs as stated afterwards, some new series of designs can be obtained which give in "general more efficient estimates than those obtained through circular designs with the same block size and replication. Further the circular designs with $k=2$ have the limitation that the number of replications must be 2 and the degrees of freedom for error mean square is always unity.. It has been attempted to com-
bine several designs with $k=2$ and get fresh designs which do not suffer from any of the limitations (Kempthorne, 1953). As the method of analysis follows more or less on the same lines as suggested by Das, it has not been described any further but the final results for-the intra-; block analysis have been presented below separately for each case.

2. Particular Cases

2.1. Case 1 When $k=2$

Though this case has been presented by Das, it has been presented here only for the sake of completeness.

The design is obtained by developing the initial block $(1,2)$ $\bmod (v)$ or the initial block with any constant difference. The solution for t_{i} for this design is

$$
\begin{aligned}
v t_{i} & =\sum_{u=1}^{p}(p-u+1)\left(p-u t_{2}\right) Q_{i}^{u-1}\left(v \text { is odd and } p=\frac{v-1}{2}\right) \\
& =\sum_{v=1}^{p}(p-u+1)^{2} Q_{i}^{u-1} \quad\left(v \text { is even and } p=\frac{v}{2}\right)
\end{aligned}
$$

where Q_{a} is the adjusted total of the a-th treatment and $Q_{i}{ }^{u}=Q_{i+u}+Q_{i-u},(i+u)$ and $(i+u)$ being taken $\bmod v$ wherever necessary and $Q_{i}{ }^{0}$ is to be taken as Q_{i} only. These definitions of $Q_{i}{ }^{*}$, etc., have been used throughout the' paper. The different variances of differences between treatment pairs,' are given by

$$
\begin{aligned}
\operatorname{Var}\left(t_{i}-t_{i+u}\right) & =\frac{2 u(v-u)}{v} \sigma^{2} \\
u & =1, \cdots p
\end{aligned}
$$

where σ^{2} is the error variance. Efficiency factor as worked out from the average variance $=3 /(v+1)$.

No table is necessary in this case.
2.21. Case $2 a$-When $k=3$ and v is odd

The design can be obtained byideveloping the initial block $(1,2,3)$ $\bmod \boldsymbol{r}_{1}$,

The solution for t_{i} for the design is given by the expression

$$
4 v t_{i}=\sum_{x=1}^{p}(p-u+1)(p-u+2) Q_{i}^{u-1}-\frac{2 v}{\beta_{1}} \sum_{n=1}^{p} U_{p-x} Q_{i}{ }^{n-1}
$$

where

$$
\beta_{1}=-2 U_{p-1}+5 U_{p-2}-2 U_{p-3}-U_{p-4} \text { and } p=\frac{v-1}{2} .
$$

The different U 's can be obtained from the recurrence relation

$$
U_{u}=-2 U_{u-1}+6 U_{u-2}-2 U_{u-3}-U_{u-4} ;
$$

the initial values of U 's being

$$
U_{0}=1, \quad U_{1}=-3, \quad U_{2}=12, \text { etc. }
$$

The variances of differences between treatment pairs are given by

$$
\begin{aligned}
\operatorname{Var}\left(t_{i}-t_{i \pm u}\right) & =\frac{1}{2 v}\left\{u(v-u)-\frac{2 v}{\beta_{1}}\left(U_{p-1}-U_{p \rightarrow u-1}\right)\right\} \sigma^{\mathbf{1}} \\
u & =1,2, \cdots, p .
\end{aligned}
$$

When $u=p_{0}, U_{p-u-1}$ is to be taken as zero. The values of U 's and β_{1}, for v up to 49 have been tabulated and presented in Table I.

Efficiency factor as obtained from the average variance

$$
=\frac{4 v p}{v p(p+1)-\frac{6 v}{\beta_{1}}\left(p U_{p-1}-\sum_{u=1}^{p} U_{p-u-1}\right)}
$$

and tabulated values have been given in the table for different values of v up to 30 .
2.22. Case $2 b$-When $k=3$; and v is even

The solution for t_{i} for the designs is given by the expression

$$
4 v t_{i}=\frac{3}{2} \sum_{u=1}^{p}\left(p_{1}-u+1\right)^{2} Q_{i}^{u-1}-\frac{2 v}{\beta_{j}} \sum_{u=1}^{p} U_{p-u} Q_{i}{ }^{n-1}
$$

where β_{1}, U_{n} and variance expressions are the same as given above except that the initial values in the recurrence relation are different, viz. $, U_{\varphi}=1, U_{1}=-2, U_{2}=9$, etc.

Table I

Values of U_{r} and β_{1} which appear in the solution of the treatment effects in designs with block size 3

r	Ur	v	β_{1}	E.F.
0	1	5	11	0.8148
1	-3	7	-41	0.6833
2	12	9	153	0.5862
3	-44	11	-571	0.5152
4	165	13	2,131	0.4549
5	:-615	15	-7,953	0.4088
6	2,296	17	29,681	$0 \cdot 3787$
7	-8,568	19	-1,10,771	$0 \cdot 3398$
8	31,977	21	4,13,403	0.3133
9	-1,19,339	23	-15,42,841	0.2906
10	4,45,380	25	57,57,961	0.2710
11	-16,62,180	27	-2,14,89,003	$0 \cdot 2528$
12	62,03,341	29	8,01,98,015	$0 \cdot 2378$
13	-2,31,51,183	31	-29,93,03,201	
14	8,64,01,392	33	1,11,70,14,609	
15	-32,24,54,384	35	-4,16,87,55,715	..
16	1,20,34,16,145	37	15,55,80,08,539	..
17	-4,49,12,10,195	39	-58,06,32,78,153	.
18	16,76,14,24,636	41	2,16,69,51,04,121	.
19	$-62,55,44,88,348$	43	-8,08,71,71,38,334	.
20	2,33,45,65,28,757	45	30,18,17,34,55,203	.
21	-8,71,27,16,26,679		-1,12,63,97,66,58,481	.
22	32,51,62,99,77,960	49	4,20,37,73,31,84,724	.
23	$-1,21,35,24,82,85,760$
24	4,52,89,36,31,62,681	.	.	.

Efficiency factor

$$
=\frac{4 v(v-1)}{p\left(v^{2}-1\right)-\frac{6 v}{\beta_{1}}\left\{(v-1) U_{p-1}-2 \sum_{u=1}^{p-1} U_{p \rightarrow u-1}\right\}}
$$

Tabulated values for β_{1} and U 's have been presented in Table II.
2.31. Case $3 a$-When $k=4$ and v is odd

The design can be obtained by developing the initial block (1,2 , 3, 4) $\bmod v$.

The solution for t_{i} for the design is given by

$$
\begin{aligned}
10 v t_{i}= & \sum_{u=1}^{p}(p-u+1)(p-u+2) Q_{i}^{u-1} \\
& +\frac{2 v\left(\beta_{2}-4 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1} \\
& +\frac{2 v\left(4 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p} V_{p-u} Q_{i}{ }^{u-1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{1}=-3 U_{p-2}+10 U_{p-3}-4 U_{p-4}-2 U_{p-5}-U_{p \rightarrow 6} . \\
& \gamma_{1}=U_{\nu-1}-U_{p-3} . \\
& \beta_{2}=-3 V_{p-1}+10 V_{p-2}-4 V_{p-3}-2 V_{p-4}-V_{p-5} . \\
& \gamma_{2}=V_{p}-V_{n \rightarrow 2} . \\
& U_{u}=-2 U_{u-1}-3 U_{u-2}+12 U_{u-3}-3 U_{u-4}-2 U_{u-5}-U_{u-6} . \\
& V_{u}=-2 V_{u-1}-3 V_{u-2}+12 V_{u-3}-3 V_{u-4}-2 V_{u-5}-V_{k i-6} .
\end{aligned}
$$

The initial values of U 's and V 's are

$$
\begin{aligned}
& U_{0}=1, U_{1}=-3, U_{2}=3, \quad U_{3}=15, \text { etc. } \\
& V_{0}=1, \quad V_{1}=1, \quad V_{2}=-8, \quad V_{3}=24, \text { etc. }
\end{aligned}
$$

The different variances of difference between treatment pairs are given by

Table II

V^{2}.lues of U_{r} and β_{1} which appear in the solution of the treatment effects in designs with block size 3

r	U_{r}	ν	β_{1}	E.F.
0	1	6	30	0.7435
1	-2	8	-112	0.6312
2	9	10	418	$0 \cdot 5498$
3	-32	12	-1,560	0.4820
4	121	14	5,820	0.4306
5	-450	16	-21,728	$0 \cdot 3891$
6	681	18	81,090	$0 \cdot 3548$
7	-6,272	20	-3,00,632	$0 \cdot 3262$
8	23,409	22	11,20,438	$0 \cdot 3014$
9	-86,362	24	41,83,120	0.2845
10	3,24,041	26	1,56,10,042	$0 \cdot 2612$
11	-12,06,800	28	-5,82,59,048	$0 \cdot 2460$
12	45,07,161	30	21,74,24,150	$0 \cdot 2257$
13	-1,68,16,842	32	-81,14,39,552	
14	6,27,66,209	34	3,02,83,32,058	.
15	-23,42,40,992	36	-11,30,18,90,680	.
16	87,42,05,761	38	42,17,92,78,662	\ldots
17	-3 26,25,73,050	40	$-1,57,41,50,25,968$.
18	1217,60,96,441	42	5,87,48,08,73,210	.
19	-45,44,18,01,712	44	$-21,92,50,84,68,872$	
20	1,69,59,11,22,409	46	81,82,55,30,00,278	\cdots
21	-6,32,92,26,74,922		-3,05,37,70,35,34,240	.
22	23,62,09,95,91,281	\ldots	.	.
23	-88,15,47,56,75,200	-.	. .	.
24	3,28,99,80,31,25,521	\cdots	.	.

$$
\begin{aligned}
& \operatorname{Var}\left(t_{i}-t_{i \pm u}\right) \\
& \qquad \begin{array}{l}
=\frac{1}{5 v}\left\{u(v-u)+\frac{2 v\left(\beta_{2}-4 \gamma_{2}\right)}{\left.\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)}\left(U_{1-2}-U_{p-u-2}\right)\right. \\
\left.+\frac{2 v\left(4 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)}\left(V_{p-1}-V_{p-u-1}\right)\right\} \sigma^{2} \\
u=1, \cdots p .
\end{array} \\
& \quad u=1
\end{aligned}
$$

Tabulated values of $U^{\prime} s, \quad V ' s,\left(4 \gamma_{1}-\beta_{1}\right) v,\left(\beta_{2}-4 \gamma_{2}\right) v$, ($\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}$) and efficiency factor have been presented in Table III.
2.32. Case $3 b$-When $k=4$ and v is even

The solution for t_{i} is

$$
\begin{aligned}
10 v t_{i}= & \left.2 \sum_{u=1}^{p}(p-u+1)^{2} Q_{i}{ }^{u-1}+\frac{2 v\left(\beta_{2}-4 \gamma_{2}\right)}{\left(\beta_{1}^{-} \gamma_{2}-\beta_{2} \gamma_{1}\right.}\right) \\
& \times \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}{ }^{u-1}+\frac{2 v\left(4 \cdot{ }_{2}^{\prime}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{-}\right)} \sum_{k=1}^{p} V_{p-u} Q_{i}{ }^{u-1}
\end{aligned}
$$

The initial values for U 's and V 's are:

$$
\begin{aligned}
& U_{0}=1, U_{1}=-2, U_{2}=0, U_{3}=18, \text { etc. } \\
& V_{0}=1, V_{1}=1, V_{2}=-5, V_{3}=16, \text { etc. }
\end{aligned}
$$

Tabulated values for U's, V 's, $\left(\beta_{2}-4 \gamma_{2}\right) \nu,\left(4 \gamma_{1}-\beta_{1}\right) \nu$ and ($\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}$) have been presented in Table IV together with E.F.

3. Some Modified Circular Designs

All the above designs have been developed from only one initial block giving as many replications as the block size. Sometime particularly when $k=2$, it may be necessary to have more replications keeping the block size the same. This is possible by taking more than one initial block and getting the designs by developing them. Such designs have been discussed by Kempthorne (1953). The initial blocks can be chosen in various ways. By just repeating one initial block, it is possible to get such a design. But the efficiency of the designs can be increased by taking different initial blocks. A series of designs can be obtained by taking different initial blocks when $k=2$ and 3 and have been presented below.

Table III
Values of $U_{r}, V_{r},\left(4 \gamma_{1}-\beta_{1}\right), \nu,\left(\beta_{2}-4 \gamma_{2}\right) \nu,\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ and E.F. which appear in the solution of the treatment effects in design with block size 4 and odd number of treatments

r	U_{r}	V_{r}	v	$\left(4 \gamma_{1}-\beta_{1}\right) v$	$\left(\beta_{2}-4 \gamma_{2}\right) v$	$\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$	E.F.
	1	1	5	-45	215	48	0.9800
1	-3	1	7	-47	-434	377	0.8249
2	3	-8	9	1,03;	-1,170	3,145	0.7711
3	15	24	1 I	-3,509	10,802	$\begin{array}{r}26,269 \\ \hline, 19,413\end{array}$	$0 \cdot 7026$
4	-76	-15	13	2,327	$-31,486$	$2,19,413$ $18,32,625$	0.8443 0.6059
5	154	-143	15	30,375	$\begin{array}{r}6,750 \\ \hline\end{array}$	18,32,625	0.6059
6	102	- 640	17	- 1,48,392	$3,16,574$ $-1335,358$	$1,53,06,833$ $13,01,90,682$	0.5516 0.5206
7	- 1,6̄0	- 1,088	19	2,71,111	$-1335,358$ 2046130	1,06,78,46,845	0.4818
8	6,043	- 1,455	21	4,60,635	2006.130 $56,52,526$	$1,06,78,46,845$ $8,91,90,94,697$	0.4.523
8	$-4,233$	14,289	23	-43,43.397	$\begin{array}{r}56,52,526 \\ -4,18,96,050 \\ \hline\end{array}$	$8,81,90,94,697$	0.4224
10	-26,999	-38,888	25	1,30,61,475	$-4,18,96,000$ $10,62,15,57, ~$	6,22,22,06,03,405	$0 \cdot 4044$
11	1,31.805	19,5;6	27	-58,44,28.5	$10,62,15,57 \mathrm{~J}$ $-16,18,142$	$6,22,22,06,03,405$ $51,97,04,16,10,021$	0.3838
12	-2.45 840	2,54,881	29	10,41,25,92]	$-16,18,142$ $-1,01,24,07,362$	4,32,3; $93,61,00,481$	0.3838
13	-2.24.460	$-10,74,015$	31	$45,36,67,919$ $-73,55,35,185$	$-1,01,24,07,362$ $\mathbf{3 , 8 6 , 5 3 , 3 3 . 8 7 0}$	$\begin{aligned} & 4,32,3593,61,00,481 \\ & 3635, \therefore 9,93,13,55,105 \end{aligned}$	\cdots
14	28.51,020	17,07,840	33 35	$-73,55,35,185$ $-1,49,13,52,65$	$3,86,53,33.870$ $-5,09,78,64,030$	$3635,49,91,50,50,565$	-
15	-83 19,924	28,69,696	35	-1,49,13,52,065	$-5,09,78,64,030$ $-1,66,73,25,02,894$	- $\begin{array}{r}\mathbf{3}, 02,82,79,50,1,30,557\end{array}$.
16	58,72677	-2,4. $, 15,999$	37	12,52,01,50.243	$-1,66,73,25,02,894$	$25,21,90,76,50,44,36,054$ $2,14,2590,02,90,02,47,945$.
17	4,84,28,913	6.36.09,697	39	-33,26,3+,05,565	$1,11,25,57: 98,030$ $-2,60,9752,84,091$	$2,11,2590,02,90,02,47,945$ $20,77,67,81,38,03,72,88,605$	
18	- 22,20,33,745	-2,24,65,496	41	9,04,19,81,371	$-2,60,9752,84,091$ $-46,80,22,2,046$	20,77,67,81,38,03,72,88,605	
19	38,59 68,854	-45,10,41,000	43	2,72,44, $36,04,547$	-46,80,22,2 1,046	*	
20	46,59,68,854	1,79,88,9),377	45	$-11,01,42,76,01625$	25,67,40,13,73,250		
21	-4,91,15,40,018	-2,65,8: 19,535	47	16.22,21:89,92,887	- $91.5188,36,00,866$	*	
22	13 65,35 45,010	-5,52,66,96,208	49	39,75,65,93,80,231	5,62,98, 22,35,41,910		
23	$-7,75,14,00,342$	41,95,12,39,680		.	.	-	

* Means that figures are too large in these entries.

Table IV
Values of $U_{r}, V_{r},\left(4 \gamma_{1}-\beta_{1}\right) \nu,\left(\beta_{2}-4 \gamma_{2}\right) \nu,\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ and E.F. which appear in the solutions of the treatment effect in designs with block size 4 (Even number of treatments)

r	U_{r}	V_{r}	v	$\left(4 \gamma_{1}-\beta_{1}\right)=$	$\left(2.2-4 \gamma_{2}\right) \geqslant$	$\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$	E.F.
0				-120			
1	-2	1	8	-120	-234 -704	261 2176	0.9016 0.8095
$\begin{array}{r}2 \\ 3 \\ \hline\end{array}$	18	-5	10	-1,410	-	2,176 18,180	0.8085
3 4 4	18 -63	18	12	-1,680	- $\begin{array}{r}18,960\end{array}$	18,180 $1,51,840$	0.7537 0.6723
5	$\begin{array}{r}\text {-63 } \\ \hline 6\end{array}$	-9 -95	14	\% 30,856	3,248	12,68,228	$0 \cdot 6185$
6	256	-95	18	$-1,07,264$	1,97,888	1,11,81,324	$0 \cdot 5831$
7	256 $-1,548$	421 -7104	18	99,720 7	6,30,160	8,84,75,140	$0 \cdot 5323$
8	3,343	-794	20	$7,24,080$ -3863	12,48,240	74,54,05,920	$0 \cdot 4979$
9	8,810	-995	22	$-38,63,288$ 7798	25,97,616	6,22,39,14,196	$0 \cdot 4668$
10	-31,232	9,441 $-25,649$	24 26	77,98,080	- 2,65,87,200	51,98,38,35,200	$0 \cdot 4393$
11	1,04,806	$-25,649$ 12,640	28	- $\begin{array}{r}79,56,104 \\ -10,6596112\end{array}$, 6.73 83,472	4,34,18, $50,01,972$	$0 \cdot 4155$
12	-1,13,535	1,68,931	30	- $\begin{array}{r}\text { 33,13,17,000 }\end{array}$	$-1,52,656$ $-64817,200$	36,20 51,81,59,744	$0 \cdot 4001$
13	-4,69,800	- 7,09,199	30 32	$33,13,17,000$ $-24,49,43,872$	- $64,188,17,200$	3,02,90.16,80,49,300	$0 \cdot 3657$
14	£6,26,560	11,22,345	34	$-24,49,43,872$ $-2,20,65,66,136$	$2,47,37,46,944$ $-3,24,75,388$	25,29,95,90,08,94,461	..
15	-54,58,904	19,14,016	34 36	$-2,20,65,66,136$ $10,64,78,05,680$	- 3,24,75,38,288	2,11,31,25,50,05,32,072	..
16	- 24,37,247	-1,62,11,879	38	$10,64,78,05,680$ $-19,40,91,45,840$	$-1,09,60,84,480$ $716,46,71,66556$	17,64,96,90,63,22,65,920	.
17	5,43,01,590	4,19,26,940	$4{ }^{3}$	- $25,63,31,24,160$	$7,16,46,71,66,556$ $-1,67,69,27,64,480$	1,46,92,67,28,69,86,46,756	\cdots
18	$-17,26,85,232$	$-1,43,67,629$	42	2.74,94,10,15,720	$-1,67,69,27,64,480$ $2,15,62,15,65,684$	$12,29,63,83,86,15,99,70,560$.
19	16,38,72.522	- 29,88,65,664	44	- 2,93,41,24,35,024	- $16,62,00,47,89,808$	* *	\cdots
20	85,75,32,721	1,18,76,42,815	46	4,48,01,22, 44,216	-59,10.54,76,72,4:32	*	.
21	- 4,43,14,77,164	-1,74,63,71,279	48	55,59,38.08,08,320	-68,88,55,49,49,120	*	
23	$8,60,37,16,192$ $6,04,68,43,068$	-3,68,11,12,979	50	-2,47,54,46,71,39,800	2,50,26, $79,05,87,600$		\cdots
24.	$-94,00,52,18,6$ ธ̄ 5	$27,73,64,58,880$ $-68,33,68,63,659$	\cdots		
		-68,33,68,63,659		-			.

* Entries in these columns are too large.

3.11. Case $4 a-k=2, r=4$ (v is odd)

The layout of the design is obtained by developing the initial blocks, viz., $(1,2)$ and $(1,3), \bmod v$.

The solution for t_{i} for the design is given by the expression

$$
\left(5 v t_{i}\right)=\sum_{k=1}^{p}(p-u+1)(p-u+2) Q_{i}^{n-1}-\frac{2 \nu}{B_{1}} \sum_{N=1}^{p} \bar{U}_{p-u} Q_{i}^{u-1} .
$$

whero

$$
\beta_{1}=-U_{i-1}+3 U_{p-2}-U_{p-3}-U_{p-4}
$$

and

$$
\begin{aligned}
& U_{u}=-U_{u-1}+4 U_{u-2}-U_{u-3}-U_{u-4} . \\
& U_{0}=1, U_{1}=-2, \quad U_{2}=6, U_{3}=-15, \text { atc. }
\end{aligned}
$$

The different variances are given by

$$
\begin{array}{r}
\operatorname{Var}\left(t_{i}-t_{i} \pm u\right)=\frac{2}{5 v}\left\{u(v-u)-\frac{2 v}{\beta_{1}}\left(U_{p-1}-U_{1 \cdots u-1}\right\} \boldsymbol{\sigma}^{\mathbf{2}}\right. \\
\\
u=1, \cdots p .
\end{array}
$$

Tabulated values of $. U_{w}, \beta_{1}$, and E.F. have been presented in Table V.

3.12. Case $4 b-k=2, r=4$ (v is even)

The design is to be obtained from the same two initial blocks as when v is odd.

The solution for t_{i} is given by

$$
5 v t_{i}=\sum_{u=1}^{p}(p-u+1)^{2} Q_{i}^{u-1}-\frac{2 v}{\beta_{1}} \sum_{u=1}^{p} U_{p-u} Q_{i}^{u-1}
$$

where U 's, β_{1} and variance expressions are the same as in the above case except with the different initial values for U 's, i.e.,

$$
U_{0}=1, U_{1}=-1, U_{2} \doteq 4, U_{3}=-9, U_{4}=25, \text { otc. }
$$

Tabulated values of U_{r}, β_{1} and E.F. have been presented in Table VI.

Table V

Values of U_{r} and β_{1} which appear in the solution of the treatment effect in designs with block size two and with initial blocks $(1,2)$ and.
$(1,3)$ and for odd and even number of treatment

Table VI

Values of U, and β_{1} which appear in the solution of the treatment effect in designs with block size two and with initial blocks $(1,2)$ and $(1,3)$ and for odd and even number of treatment

r	U,	v	β_{1}	E.F.
0	1	6	-8	0.5769
1	-1	8	21	$0 \cdot 5069$
2	4	10	-55	0.4492
3	-9	12	144	0.4024
4	25	14	-377	$0 \cdot 3642$
5	-64	16	987	0.3324
6	169	18	-2,584	$0 \cdot 3056$
7	-441	20	6,765	$0 \cdot 2828$
8	1,156	22	-17,711	0.2631
9	$-3,025$	24	- 46,368	$0 \cdot 2459$
10	7,921	26	- $-1,21,393$	$0 \cdot 2309$
11	-20,736	28	3,17,811	0.2175
12	- 54,289	30	-8,32,040	$0 \cdot 2057$
13	-1,42,129	32	21,78,309	
14	-- 3,72,100	- 34	-57,02,887	. .
15	-9,74,169	36	1,49,30,352	.
16	25,50,409	38	$-3,90,88,169$	\cdots
17	-66,77,056	40	10,23,34,155	.
18	1,74,80,761	42	-26,79,14,296	.
19	$-4,57,65,225$	44	70,14,08,733	.
20	11,98,14,916	46	$-1,83,63,11,903$	
21	-31,36,29,521.	48	4,80,75,26,976	.
22	82,12,23,649	50	-12,58.62,69,025	.
23	-2,14,99,91,424	-	.	.
: 24	5,62,87,50,624			.

3.21. Case $5 a-k=2, r=6$

The layout of the design is obtained by developing the initial blocks, viz., $(1,2),(1,3)$ and $(1,4), \bmod v$ both when v is odd or even. When ν is odd

The solution for t_{i} for the design is given by

$$
\begin{aligned}
14 v t_{i}= & \sum_{u=1}^{p}(p-u+1)(p-u+2) Q_{i} i^{u-1} \\
& +\frac{2 v\left(\beta_{2}-3 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{n=1}^{p-1} U_{p-u-1} Q_{i^{n-1}} \\
& +\frac{2 v\left(3 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p} V_{u-n} Q_{i^{n-1}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{1}=-U_{p-2}+5 U_{p-2}-2 U_{p-4}-U_{p-5}-U_{p-6}, \\
& \gamma_{1}=U_{p-1}-U_{p-3} \\
& U_{u}=-U_{u-1}-U_{u-2}+6 U_{u-3}-U_{u-4}-U_{u-5}-U_{u-6}, \\
& U_{0}=1, U_{1}=-2, U_{2}=1, U_{3}=7, \text { etc. }, \ldots \\
& \beta_{2}=-V_{p-1}+5 V_{u-2}-2 V_{p-3}-V_{i-4}-V_{p-5}, \\
& \gamma_{2}=V_{p}-V_{p-2}, \\
& V_{u}=-V_{u-1}-V_{u-2}+6 V_{u-3}-V_{u-4}-V_{u-5}-V_{u-6}, \\
& V_{0}=1, V_{1}=1, \quad V_{2}=-4, V_{3}=8, \text { etc. },
\end{aligned}
$$

The different variances are given by

$$
\begin{aligned}
& \operatorname{Var}\left(t_{i}-t_{i \pm u}\right) \\
& =\frac{1}{7 v}\left\{u(v-u)+\frac{2 v\left(\beta_{2}-3 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-.{ }_{2} \gamma_{1}\right)}\left(U_{p-2}-U_{p-i-2}\right)\right. \\
& \left.+\frac{2 v\left(3 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)}\left(V_{p}-V_{p-u-1}\right)\right\} \sigma^{2} \\
& u=1,2, \cdots p .
\end{aligned}
$$

Tabulated values of $U_{u},{ }^{\prime} V_{u},\left(3 \gamma_{1}-\beta_{1}\right) v,\left(\beta_{2}-3 \gamma_{2}\right) v$ and $\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ have been presented in Table VII.

Table VII
Values of $U_{r}, \quad V_{1}, \quad\left(3 \gamma_{1}-\beta_{1}\right) v, \quad\left(\beta_{2}-3 \gamma_{2}\right) \nu, \quad\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ which appear in the solutions of treatment effects in designs with block size two with initial blocks $(1,2),(1,3)$ and $(1,4)$ for number of treatments

3.22. Case $5 b-k=2, r=6$ (v is even)

The solution for t_{i} is given by the expression

$$
\begin{aligned}
14 v t_{i}= & \sum_{*=1}^{p}(p-u+1)^{2} Q_{i}^{u-1}+\frac{2 v\left(\beta_{2}-3 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p-1} U_{p-\alpha-1} Q_{i}{ }^{u-1} \\
& +\frac{2 v\left(3 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}
\end{aligned}
$$

where β 's, γ 's, U 's, V 's and variance expressions are the same as expressed above and the initial values in the difference equations are:

$$
\begin{aligned}
& U_{0}=1, \quad U_{1}=-1, \quad U_{2}=-1, \quad U_{3}=8, \text { etc. } \\
& V_{0}=1, \quad V_{1}=1, \quad V_{2}=-2, \quad V_{3}=5, \text { etc. }
\end{aligned}
$$

Tabulated values of quantities as indicated above have been presented in Table VIII.

3.3. Case 6-When $k=3, r=6$

This class of designs have been obtained by developing the initial blocks $(1,2,3)$ and $(1,2,4)$, mod v. The analysis of this type of design corresponds to the case $k=4$, except with the minor changes as indicated.

The solution for t_{i} for the designs is obtainc d by multiplying the R.H.S. of the case $3(a)$ and $3(b)$ by $3 / 4$. The variance will be $3 / 4$ th to that of $k=4$ and the efficiency factor will be $8 / 9$ times to that of $k=4$.

4. Some Designs with Unequal Differences in the Initial Block

During the course of investigation it was seen that there is another class of designs, which are more efficient than the designs obtained in the previous section. The solution of designs with blcck size 3 with one initial block and of a design with block size 2 with two initial blocks is presented below.

4.1. Case 7

$k=r=3$ with the initial block of the type $(1,2,4)$ or $(1,3,4)$ mod v. The analysis of this type of designs is the same as that of $k=2, r=6$, i.e., Case Nos. 5 (a) and 5 (b) except for some minor changes.

Table VIII

1 Values of $U_{r}, \quad V_{r}, \quad\left(3 \gamma_{1}-\beta_{1}\right) v,\left(\beta_{2}-3 \gamma_{2}\right) \nu,\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ which appear in the solutions of treatment effects in designs with block size two with initial blocks $(1,2),(1,3)$ and $(1,4)$ for even number of treatments

Solution of t_{i} is obtained by multiplying the R.H.S. of the solution in the case when $k=2$ and $r=6$ by $3 / 2$ and the same change for the variance.

For this case, Tables VII and VIII have to be used for the analysis. Table (A) below indicates how the efficiency factor differs from the case when $k=3$ with the initial block (1,2,3).

Table A

V	I	II
5	0.8148	0.9059
10	0.5498	0.6997
15	0.4088	0.5871
20	0.3262	0.5159
25	0.2710	0.4543
30	0.2257	0.4056

Col. I corresponds to the designs having the initial block of the type (1,2,3) and Col. II corresponds to the designs with the initial block of the type $(1,2,4)$ or $(1,3,4) \bmod v$.
4.21. Case $8 a$-When $k=2$ and $r=4, v=2 p+1, b=2 v$

The designs are obtained by developing two initial blocks, viz., $(1,3)$ and $(1,4) \bmod v$. This class of designs are also partially balanced incomplete block design with p number of associate classes with the following parameters:

$$
\begin{aligned}
\lambda_{i} & =1(i=2,3) \\
& =0(i=1,4, \cdots p) \\
n_{i} & =2(i=1, \cdots p) .
\end{aligned}
$$

The solution for t_{i} for the design is given by

$$
13 v t_{i}=\sum_{n=1}^{p}(p-u+1)(p-u+2) Q_{i}^{*-1}
$$

$$
\begin{aligned}
& +\frac{2 v\left(3 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{v=1}^{p-1} U_{p-u-1} Q_{l^{n-1}} \\
& +\frac{2 v\left(\beta_{2}-3 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma\right)} \sum_{\psi=1}^{p} V_{v-u} Q_{i}{ }^{n-1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{1}=3 U_{p-2}-U_{p-4}-U_{p-5}-U_{p-6} \\
& \gamma_{1}=U_{p \rightarrow 1}-U_{p-3} \\
& U_{u}=-U_{u-1}+4 U_{w-3}-U_{k-5}-U_{u-6}
\end{aligned}
$$

and

$$
\begin{aligned}
& U_{0}=1, \quad U_{1}=-2, \quad U_{2}=2, U_{3}=2, \text { etc }, \\
& \beta_{2}=3 V_{p-2}-V_{p-3}-V_{p-4}-V_{p-5}, \\
& \gamma_{1}=V_{p}-V_{p-2}, \\
& V_{u}=-V_{u-k}+4 V_{u-3}-V_{u-5}-V_{u-6}
\end{aligned}
$$

and

$$
V_{0}=1, V_{1}=1, V_{2}=-3, V_{3}=6, \text { etc. }
$$

The different variances are given by

$$
\begin{aligned}
& \operatorname{Var}\left(t_{i}-t_{i} \pm_{u}\right) \\
& =\frac{2}{13 v}\left\{u(v-u)+\frac{2 v\left(3 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2}^{-1}\right)}\left(U_{p-2}-U_{p \rightarrow u-2}\right)\right. \\
& \left.+\frac{2 v\left(\beta_{2}-3 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)}\left(V_{p-1}-V_{p-u-1}\right)\right\} \sigma^{2} \\
& u=1, \cdots p .
\end{aligned}
$$

Tabulated values of $U_{u}, V_{u},\left(3 \gamma_{3}-\beta_{1}\right) v,\left(\beta_{2}-3 \gamma_{2}\right) v,\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ and E.F. have been presented in Table IX.
4.32. Case $8 b$-When $k=2$ and $r=4, \quad v=2 p$ (p is not a multiple of 3), $b=2 v$
The primary parameters and recurrence relations are same as above. The solution for t_{i} for the design is given by

Table IX
Values of $U_{r}, V_{r}\left(3 \gamma_{1}-\beta_{1}\right) v,\left(\beta_{2}-3 \gamma_{2}\right) v,\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ which appear in the solutions of treatment effects in designs with block size two with initial block $(1,3)$ and $(1,4)$

$$
\begin{aligned}
13 v t_{i}= & \left.\sum_{u=1}^{p}(p-u+1)^{2} Q_{i}^{u-1}+\frac{2 v\left(3 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right.}\right) \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1} \\
& +\frac{2 v\left(\beta_{2}-3 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}
\end{aligned}
$$

and the initial values of U 's and V 's are

$$
\begin{aligned}
& U_{0}=1, U_{1}=-1, U_{2}=0, U_{3}=4, \text { etc. } \\
& V_{0}=1, V_{1}=1, V_{2}=-1, V_{3}=3, \text { etc. }
\end{aligned}
$$

The different variances are the same as given in Case $8 a$.
All the columns as in Case $8 a$ have also been presented in Table X.

4.3. Case 9—When $k=2$ and $r=4$. $v=2 p+1, \quad b=2 v$

The designs are obtained by developing the initial block of the type $(1,2)$ and $(1,4) \bmod v$. This class of designs are partially balanced incomplete block designs with p associate classes with the following parameters:

$$
\begin{aligned}
\lambda_{i} & =1(i=1,3) \\
& =0(i=2,4, \cdots p) \\
n_{i} & =2(i=1, \cdots p) .
\end{aligned}
$$

The solution for t_{i} is given by

$$
\begin{aligned}
10 v t_{i}= & \sum_{u=1}^{\prime}(p-u+1)(p-u-2) Q_{i}^{u-1} \\
& +\frac{2 v\left(\beta_{2}-2 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1} \\
& +\frac{2 v\left(2 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{1}=-U_{p-2}+4 U_{p-3}-2 U_{p-4}-U_{p-6} \\
& \gamma_{b}=U_{p-1}-U_{p-3}
\end{aligned}
$$

Values of $U_{r}, V_{r},\left(3 \gamma_{1}-\beta_{1}\right) v,\left(\beta_{2}-3 \gamma_{2}\right) v,\left(\beta_{1} r_{2}-\beta_{2} r_{1}\right)$ and E.F. which appear in the solutions of treatment effects in designs with block size two with initial blocks $(1,3)$ and $(1,4)$

r	N_{r}	${ }^{v_{r}}$	v	$\left(3 \gamma_{1}-\beta_{2}\right) v$	$\left(\beta_{2}-3 \gamma_{2}\right) v$	$\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$	E.F.
0	,	1	8	152	-64	21	0.5069
8	-1	-1	10	$\begin{array}{r}182 \\ -240 \\ \hline 109\end{array}$	320	64	0.6000
8	0	-1	14 16	109 $-2,676$	182 1808	559 1 659	0.4588
4	-s	0	20	$-2,676$ $-3,520$	1,808 6,400	1,659	${ }^{0.4498}$
5	7	-5	22	-17,886	3,256	- $43,2 \div 3$	0.4062 9.3907
6	9	15	26	-13,260	63,310	3,80,575	${ }_{0.3827}$
7	-40	-15	. 28	76,076	-46,592	11,28,621	0.8501
8	${ }^{64}$	-7	32	-2,88,352	4,08,320	99,25,797	
${ }^{10}$	-24	-64	34	- 79,754	-6,21,622	2,94, $, 5, \mathrm{f}, 71$	
10	-135	-119	38	-24,62,894	17,89,496	25,87,80,519	
-11	375	81	40	20,20,720	-46,02,880	76,80,29,504	
18	-440	175	44	- 1,43,73,656	33,16,852	6,75,17,56,371	
13	-124	-629	46	2,29,60,716	-2,34,25,424	20,02,28,23,927	
14	-1,584	-896	50	5,70,68,400	-2,87,40,800	1,76,09,31,48,736	
15 16	$-3,195$ $-1,449$	${ }_{-2,337}^{-141}$	\cdots	..	\cdots	1,70,31,48,	\cdots
17	-3,952	$-5,665$			\because		\cdots
18	-16,128	${ }_{-5,775}$	\cdots	.	\ldots		..
19	24,464 -7055 -5.4	-3,840	..	\cdots	..		\cdots
${ }_{21}^{20}$	- $-56,721$	- $-25,45$ $-46,367$		\cdots	\cdots	\cdots	..
22	1,48,176	27,679			.	\cdots	
${ }^{23}$	-1,64,220	75,411 -2.61264	\because	\because
24 86	$\bar{\epsilon}, 46,295$	$\underset{\substack{-2,61,264 \\ 3,40,075}}{ }$	\cdots	\cdots	\ldots	.	.
	¢,40,2.	3,4,075	.			.	.

$$
\begin{aligned}
& U_{u}=-U_{u-2}+4 U_{u-3}-U_{u-5}-U_{u-6}, \\
& U_{0}=1, U_{1}=-1, U_{2}=-1, U_{3}=5, \text { etc. }
\end{aligned}
$$

and

$$
\begin{aligned}
& \beta_{2}=-V_{p-1}+4 V_{p-2}-2 V_{p-3}-V_{p-5} \\
& \gamma_{2}=V_{0}-V_{p-2} \\
& V_{u}=-V_{u-2}+4 V_{u-3}-V_{u-5}-V_{u-6} \\
& V_{0}=1, V_{1}=1, \quad V_{2}=-2, \quad V_{3}=2, \quad V_{4}=5, \text { etc. }
\end{aligned}
$$

The different variances are given by

$$
\begin{aligned}
& \operatorname{Var}\left(t_{i}-t_{i \pm u}\right) \\
& \quad=\frac{1}{5 v}\left\{u(v-u)+\frac{2 v\left(\beta_{2}-2 \gamma_{2}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)}\left(U_{p-2}-U_{p-\mu-2}\right)\right. \\
& \left.\quad+\frac{2 v\left(2 \gamma_{1}-\beta_{1}\right)}{\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)}\left(V_{p-1}-V_{p-u-1}\right)\right\} \sigma^{2} \\
& u=1,2, \cdots p .
\end{aligned}
$$

Tables for $U_{u}, V_{u},\left(\beta_{2}-2 \gamma_{2}\right) v,\left(2 \gamma_{1}-\beta_{1}\right) v,\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ and E.F. have been calculated for different v 's and presented in Table XI.

In order to compare the different designs of the type having the same primary parameters, the following table has been prepared.

The above table clearly shows the E.F. for the initial blocks $(1,2)$ $(1,4)$ is greater than with the initial block $(1,2)(1,3)$ and E.F. for the initial block $(1,3)(1,4)$ is greater than that of $(1,2)(1,4)$. In certain cases E.F.'s are same for two different types which means that one case is reducible to the other one,

Table for efficiency factor ($k=2, r=4$)

Number of treatments	E.F. of the designs with the initial blocks $(1,2)$ and $(1,3)$	E.F. of the designs with the initial blocks $(1,2)$ and $(1,4)$	E.F. of the designs with the initial blocks $(1,3)$ and $(1,4)$
5	0.6250	0.6522	0.6522
6	0.5769	-	-
7	0.5414	0.5417	0.5417
8	0.5096	-	0.5096
9	0.4742	0.5092	0.5092
10	0.4492	-	0.5000
11	0.4246	0.4866	0.4866
12	0.4024	-	-
13	0.3824	0.4576	0.4688
14	0.3642	-	0.4588
15	0.3476	0.4333	0.4498
16	0.3324	-	0.4498
17	0.3184	0.4105	0.4314
18	0.3056	-	-
19	0.2938	0.3843	0.

$(-)$ means designs does't exist.

Table XI
Values of $U_{r}, V_{r},\left(2 \gamma_{1}-\beta_{1}\right) v,\left(\beta_{2}-2 \gamma_{2}\right) \nu,\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right)$ and E.F. which appear in the solutions of treatment effects in designs with block size two with initial blocks $(1,2)$ and $(1,4)$

5. How to Use Tables

An illustration with $v=15$ and $k=3$.

$$
\text { For } \quad v=15, p=\frac{v-1}{2}=7, k=r=3 .
$$

The solution for t_{i} can be written with the help of Table I, and is given by the equation:

$$
4 v t_{i}=\sum_{u=1}^{7}(8-u)(9-u) Q_{i^{u-1}}-\frac{2 v}{\beta_{1}} \sum_{u \pm 1}^{\tau} U_{7-u} Q_{i}^{u-1}
$$

where $\beta_{1}=-7953$ for $v=15$.
The value of β_{1} has been obtained from Col. II entered against $v=15$ and substituting the values of $U_{6} \cdots U_{0}$, we have (4×15 $\times 2651) t_{i}=2651\left\{56 Q_{i}+42 Q_{i}{ }^{1}+30 Q_{i}{ }^{2}+20 Q_{i}{ }^{3}+12 Q_{i}{ }^{4}+6 Q_{i}{ }^{5} \quad\right.$. $\left.+2 Q_{i}{ }^{6}\right\}+2 \times 5\left\{2296 Q_{i}-615 Q_{i}{ }^{1}+165 Q_{i}{ }^{2}-44 Q_{i}{ }^{3}+12 Q_{i}{ }^{4}\right.$ $\left.-3 Q_{i}{ }^{5}+Q_{i}{ }^{6}\right\}$ or $159060 t_{i}=171416 Q_{i}+105192 Q_{i}{ }^{1}+81180 Q_{i}{ }^{2}$ $+52580 Q_{i}{ }^{3}+31932 Q_{i}{ }^{4}+15876 Q_{i}{ }^{5}+5312 Q_{i}{ }^{6}$.

The values of U 's have been obtained from Col. I of the table. Thus the above expression gives the solution of t_{i} which can furtleer be simplified. The different variances can be obtained by using either the formula or directly from the above expression.

6. Summary

In an attempt to get incomplete block designs for each and every number of treatinents the problem of analysis of circular designs was introduced by Das and was solved for the designs with the blocks of size two has been solved for plots of sizes three and four. Necessary tables required for obtaining the intra-block analysis readily have also been prepared and presented. A special class of designs with blocks of two plots and having more than one initial block has been investigated. Another class of more efficient type of designs with block size three has also been investigated.

7. Acknowledgement

We are grateful to Dr. G. R. Seth, Statistical Adviser, I.C.A.R., for providing us an opportunity to conduct the research.

8. References

1. Bose, R. C. .. "On the construction of balanced incomplete block designs," Amn. Eugen., 1939, 9.
2. -

.. "Partially balanced incomplete block designs," Sankhya, 4.
3. Chopra, A.S. .. Circular Designs and Designs Developable from Initial Blocks, Unpublished thesis, I.A.R.S., New Delhi.
4. Cochran, W. G. and Cox, G. M.

Experimental Designs, John Wiley \& Sons, Inc., New Delhi, 1957.
5. Das, M. N. .- "Circular designs," Jr. Ind. Soc. of Agri. Stat., 1960, 12 (1).
6. Kempthorne, O. .. "A class of experimental designs using block of two plots,". Ann. Math. Stat., 1953, 24, 76-85.
7. Nair, K. R. and Rao, C. R. "A note on partially balanced incomplete block designs," Sci. and Cult., 1942, 7.
8. Rao, C. R. .. "General method of analysis for incompleté block designs," J.A.S.A., 1947, 42.

