BY A. S. CHOPRA AND M. N. DAS

I.A.R.S., New Delhi

1. INTRODUCTION

CIRCULAR designs were first defined by Das (1960). A circular design with v treatments in blocks of size k can be obtained by slightly modifying his definition, *i.e.*, by developing the initial block, $1, 1 + d, \cdots$ 1 + (k - 1) d, mod (v), where d is any number prime to v. As the efficiency of a design does not depend on d, the value of d will be taken as 1 and this will simplify the construction and analysis of the design. For example, if k = 3 the design will have b (= v) blocks each of size 3. each treatment replicated 3 times. These designs have the special advantage that they are available for any number of varieties and do not involve any problem of construction (Kempthorne, 1952). As it has been indicated by Das (1960), these designs are partially balanced incomplete block design with (v - 1)/2 or v/2 associate classes according as v is odd or even. Evidently the analysis of these designs following the method of P.B.I.B. designs (Bose, 1939 and Rao, 1947) will be very complicated due to very large number of associate classes. But Das has shown that the normal equations corresponding to these designs can be solved without much inconvenience, as the number of normal equations can be reduced to (k-1) equations, whatever y may be. Though he indicated in a general way the method of analysis for any k, specific results were given by him only in the case of k = 2. When k = 3, he indicated that suitable tables have to be prepared by consulting which the solutions of the equations can be obtained. In the present paper the complete analysis of designs with k = 3 and 4 have been presented together with the preparation of necessary tables. Moreover, it has been shown that by modifying the definition of such designs as stated afterwards, some new series of designs can be obtained which give in general more efficient estimates than those obtained through circular designs with the same block size and replication. Further the circular designs with k = 2 have the limitation that the number of replications must be 2 and the degrees of freedom for error mean square is always unity. It has been attempted to com-

bine several designs with k = 2 and get fresh designs which do not suffer from any of the limitations (Kempthorne, 1953). As the method of analysis follows more or less on the same lines as suggested by Das, it has not been described any further but the final results for the intrablock analysis have been presented below separately for each case.

2. PARTICULAR CASES

2.1. Case 1—When k = 2

Though this case has been presented by Das, it has been presented here only for the sake of completeness.

The design is obtained by developing the initial block (1, 2) mod (v) or the initial block with any constant difference. The solution for t_i for this design is

$$v_{l_{i}} = \sum_{u=1}^{p} (p - u + 1) (p - u + \frac{1}{2}) Q_{i}^{u-1} \left(v \text{ is odd and } p = \frac{v - 1}{2} \right)$$
$$= \sum_{v=1}^{p} (p - u + 1)^{2} Q_{i}^{u-1} \left(v \text{ is even and } p = \frac{v}{2} \right)$$

where Q_a is the adjusted total of the *a*-th treatment and $Q_i^u = Q_{i+u} + Q_{i-u}$, (i + u) and $(i - \frac{3}{4}u)$ being taken mod v wherever necessary and Q_i^{0} is to be taken as Q_i only. These definitions of Q_i^u , etc., have been used throughout the paper. The different variances of differences between treatment pairs are given by

$$Var (t_i - t_{i+u}) = \frac{2u(v - u)}{v} \sigma^2$$
$$u = 1, \cdots p$$

where σ^{z} is the error variance. Efficiency factor as worked out from the average variance = 3/(v + 1).

No table is necessary in this case. 2.21. Case 2a—When k = 3 and ν is odd

The design can be obtained by developing the initial block (1, 2, 3) mod ν_1 .

The solution for t_i for the design is given by the expression

$$4\nu t_{i} = \sum_{n=1}^{p} (p-u+1) (p-u+2) Q_{i}^{u-1} - \frac{2\nu}{\beta_{j}} \sum_{n=1}^{p} U_{p-n} Q_{i}^{u-1}$$

where

$$\beta_1 = -2U_{p-1} + 5U_{p-2} - 2U_{p-3} - U_{p-4} \text{ and } p = \frac{\nu - 1}{2}$$

The different U's can be obtained from the recurrence relation

$$U_{u} = -2U_{u-1} + 6U_{u-2} - 2U_{u-3} - U_{u-4};$$

the initial values of U's being

-

 $U_0 = 1$, $U_1 = -3$, $U_2 = 12$, etc.

The variances of differences between treatment pairs are given by

$$\operatorname{Var}(t_{i}-t_{i\pm u}) = \frac{1}{2\nu} \left\{ u(\nu-u) - \frac{2\nu}{\beta_{1}} (U_{p-1}-U_{p-u-1}) \right\} \sigma^{*}$$
$$u = 1, \ 2, \ \cdots, \ p.$$

When $u = p_0$, U_{p-u-1} is to be taken as zero. The values of U's and β_1 , for v up to 49 have been tabulated and presented in Table I.

Efficiency factor as obtained from the average variance

$$=\frac{4\nu p}{\nu p(p+1)-\frac{6\nu}{\beta_1}\left(pU_{p-1}-\sum_{u=1}^{\nu}U_{p-u-1}\right)}$$

and tabulated values have been given in the table for different values of v up to 30.

2.22. Case 2b—When k = 3; and v is even

The solution for t_i for the designs is given by the expression

$$4\nu t_i = \frac{3}{2} \sum_{u=1}^{p} (p_i - u + 1)^2 Q_i^{u-1} - \frac{2\nu}{\beta_j} \sum_{u=1}^{p} U_{p-u} Q_i^{u-1} .$$

where β_1 , U_u and variance expressions are the same as given above except that the initial values in the recurrence relation are different, viz., $U_o = 1$, $U_1 = -2$, $U_2 = 9$, etc.

TABLE I

r.	U,	v	β1	E. F .
0	1	5	11	0.8148
1	-3	7	41	0.6833
2	12	9	153	0·5862
3	44	11		0.5152
4	165	13	2,131	0·454 9
5	~-615	15	-7,953	0.4088
6	, 2,296	1 7	29 ,681	0·3787
7	-8,568	1 9	-1,10,771	0.3398
8	31,977	21	4,13,403	0.3133
9		23		0.2906
10	4,45,380	25	57,57,961	0·2710
11	-16,62,180	27	-2,14,89,003	0.2528
12	62,03,341	29	8,01,98,015	0 2378
13	-2,31,51,183	31	-29,93,03,201	
14	8,64,01,392	33	1,11,70,14,609	••
15		35	-4,16,87,55,715	
16	1,20,34,16,145	37	15,55,80,08,539	
17	-4,49,12,10,195	39	-58,06,32,78,153	
-18	16,76,14,24,636	41	2,16,69,51,04,121	••
1 9	-62,55,44,88,348	43	-8,08,71,71,38,334	
20	2,33,45,65,28,757	45	30,18,17,34,55,203	••
21	-8,71,27,16,26,679	47	-1,12,63,97,66,58,481	
22	32,51,62,99,77,960	49	4,20,37,73,31,84,724	•
23	-1,21,35,24,82,85,760			••
24	4,52,89,36,31,62,681			••

Values of U, and β_1 which appear in the solution of the treatment effects in designs with block size 3

Efficiency factor

$$= \frac{4v(v-1)}{p(v^2-1) - \frac{6v}{\beta_1} \left\{ (v-1) U_{p-1} - 2 \sum_{u=1}^{p-1} U_{p-u-1} \right\}}$$

Tabulated values for β_1 and U's have been presented in Table II. 2.31. Case 3a—When k = 4 and v is odd

The design can be obtained by developing the initial block $(1, 2, 3, 4) \mod \nu$.

The solution for t_i for the design is given by

$$10vt_{i} = \sum_{u=1}^{p} (p - u + 1) (p - u + 2) Q_{i}^{u-1}$$

$$+ \frac{2v (\beta_{2} - 4\gamma_{2})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1}$$

$$+ \frac{2v (4\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}$$

where

$$\begin{split} \beta_{1} &= -3U_{p-2} + 10U_{p-3} - 4U_{p-4} - 2U_{p-5} - U_{p-6}.\\ \gamma_{1} &= U_{p-1} - U_{p-3}.\\ \beta_{2} &= -3V_{p-1} + 10V_{p-2} - 4V_{p-3} - 2V_{p-4} - V_{p-5}.\\ \gamma_{2} &= V_{p} - V_{v-2}.\\ U_{u} &= -2U_{u-1} - 3U_{u-2} + 12U_{u-3} - 3U_{u-4} - 2U_{u-5} - U_{u-6}\\ V_{u} &= -2V_{u-1} - 3V_{u-2} + 12V_{u-3} - 3V_{u-4} - 2V_{n-5} - V_{n-6}. \end{split}$$

The initial values of U's and V's are

 $U_0 = 1, U_1 = -3, U_2 = 3, U_3 = 15$, etc. $V_0 = 1, V_1 = 1, V_2 = -8, V_3 = 24$, etc.

The different variances of difference between treatment pairs are given by

TABLE II

		in designs	with	block s	size 3	
r	U	r	ν	· ·	β ₁	E.F.
0		1	6		30	0.7435
1		-2	8		-112	0.6312
2		9	10		418	0.5498
3		-32	12	ж	-1,560	0·4820
4		121	14		5,820	0.4306
5		-450	16		-21,728	0·3891
6	٠.,	681	18		81,090	0·3548

V llues of U_r and β_1 which appear in the solution of the treatment effects in designs with block size 3

7 -6,272 20 -3,00,632 0.3262 8 23,409 22 11,20,438 0.3014-86,362 24 9 41,83,120 0.2845 1,56,10,042 3,24,041 26 10 0.2612 28 11 -12,06,800-5,82,59,048 0.2460 45,07,161 **30** ; 21,74,24,150 12 0.225732 13 -1,68,16,842-81,14,39,552 14 6,27,66,209 34 3,02,83,32,058 36 15 -23,42,40,992-11,30,18,90,680 38 87,42,05,761 16 42,17,92,78,662 -3 26,25,73,050 40 -1,57,41,50,25,968 17 1217,60,96,441 42 5,87,48,08,73,210 18 -45,44,18,01,712 44 19 -21,92,50,84,68,872 20 1,69,59,11,22,409 46 81,82,55,30,00,278 48 -3,05,37,70,35,34,240 21 -6,32,92,26,74,922 . . 22 23,62,09,95,91,281 23 -88,15,47,56,75,200 24 3,28,99,80,31,25,521 • •

$$Var (t_{i} - t_{i \pm u})$$

$$= \frac{1}{5\nu} \left\{ u (\nu - u) + \frac{2\nu (\beta_{2} - 4\gamma_{2})}{\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1}} (U_{\nu} - U_{\mu} - u) + \frac{2\nu (4\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} (V_{\mu} - V_{\mu} - v) \right\} \sigma^{2}$$

$$u = 1, \cdots p.$$

Tabulated values of U's, V's, $(4\gamma_1 - \beta_1) v$, $(\beta_2 - 4\gamma_2) v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ and efficiency factor have been presented in Table III.

2.32. Case 3b—When k = 4 and v is even

The solution for t_i is

$$10 \ vt_{i} = 2 \sum_{u=1}^{p} (p-u+1)^{2} Q_{i}^{u-1} + \frac{2v (\beta_{2}-4\gamma_{2})}{(\beta_{1}\gamma_{2}-\beta_{2}\gamma_{1})} \\ \times \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1} + \frac{2v (4\cdots_{1}-\beta_{1})}{(\beta_{1}\gamma_{2}-\beta_{2}\gamma_{2})} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}$$

The initial values for U's and V's are:

 $U_0 = 1$, $U_1 = -2$, $U_2 = 0$, $U_3 = 18$, etc. $V_0 = 1$, $V_1 = 1$, $V_2 = -5$, $V_3 = 16$, etc.

Tabulated values for U's, V's, $(\beta_2 - 4\gamma_2) \nu$, $(4\gamma_1 - \beta_1) \nu$ and $(\beta_1\gamma_2 - \beta_2\gamma_1)$ have been presented in Table IV together with E.F.

3. Some Modified Circular Designs

All the above designs have been developed from only one initial block giving as many replications as the block size. Sometime particularly when k = 2, it may be necessary to have more replications keeping the block size the same. This is possible by taking more than one initial block and getting the designs by developing them. Such designs have been discussed by Kempthorne (1953). The initial blocks can be chosen in various ways. By just repeating one initial block, it is possible to get such a design. But the efficiency of the designs can be increased by taking different initial blocks. A series of designs can be obtained by taking different initial blocks when k = 2and 3 and have been presented below.

TABLE III

Values of U_r , V_r , $(4\gamma_1 - \beta_1)$, ν , $(\beta_2 - 4\gamma_2)$, ν , $(\beta_1\gamma_2 - \beta_2\gamma_1)$ and E.F. which appear in the solution of the treatment effects in design with block size 4 and odd number of treatments

r	U _r	V _r	v	$(4\gamma_1 - \beta_1)^{\upsilon}$	$(\beta_2-4\gamma_2)v$	$(\beta_1\gamma_2-\beta_2\gamma_1)$	E.F.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{c c} 1\\ -\$\\ -\$\\ 3\\ 15\\ -76\\ 154\\ 102\\ -1,650\\ -5,043\\ -4,233\\ -26,999\\ 1,31.805\\ -2,24,60\\ 28,51,020\\ -\$,224,460\\ 28,51,020\\ -\$,30,9924\\ 58,72,677\\ 4,84,28,913\\ -22,20,33,745\\ 38,59,68,854\\ 46,59,68,854\\ 46,59,68,854\\ -4,91,15,40,018\\ 13,65,35,45,010\\ -7,75,14,00,342\\ \end{array}$	$\begin{array}{c} 1\\ & -8\\ 24\\ -15\\ & -143\\ 640\\ -1,088\\ -1,455\\ 14,289\\ -38,888\\ 19,576\\ 2,54,581\\ -10,74,015\\ 17,07,840\\ 28,69,696\\ -2,45,15,999\\ 6.36,09,697\\ -2,45,15,999\\ 6.36,09,697\\ -2,45,15,999\\ 6.36,09,697\\ -2,45,10,41,000\\ 1,79,88,93,377\\ -2,65,8_{3},19,535\\ -5,52,66,96,208\\ 41,95,12,39,680\end{array}$	5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49	$\begin{array}{c} -45\\ -77\\ 1,03;\\ -3,509\\ 2,327\\ 30,375\\ -1,48,392\\ 2,71,111\\ 4,60,635\\ -45,43,397\\ 1,30,61,475\\ -58,44,285\\ 10,41,25,921\\ 45,36,67,919\\ -73,55,35,185\\ -1,49,13,52,065\\ 12,52,01,50,243\\ -33,26,34,05,565\\ 9,04,19,81,371\\ 2,72,44,86,04,547\\ -11,01,42,76,01625\\ 16,22,21,89,92,887\\ 39,75,65,93,80,231\\ \end{array}$	$\begin{array}{c} 215\\ -434\\ -1,170\\ 10,802\\ -31,486\\ 6,750\\ 3,16,574\\ -13,35,358\\ 20,06,130\\ 56,52,526\\ -4,18,96,050\\ 10,62,15,57,\\ -16,18,142\\ -1,01,24,07,362\\ 3,86,53,33,870\\ -5,09,78,64,030\\ -1,66,73,25,02,894\\ 1,11,25,57,98,030\\ -2,60,97,52,84,091\\ -46,80,22,2,046\\ 25,67,40,13,73,250\\ -91,51,88,36,00,866\\ 5,62,98,22,35,41,910\end{array}$	48 377 3,145 26,269 2,19,413 18,32,625 1,53,06,533 13,01,90,682 1,06,78,46,845 8,91,90,94,697 74,49,59,30,025 6,22,22,06,03,405 51,97,04,16,10,021 4,32,35,93,61,00,481 36,35,59,93,13,55,105 3,02,82,49,41,50,80,565 25,21,90,76,50,14,36,557 2,11,25,90,02,90,02,97,945 20,77,67,81,38,03,72,88,605 * *	0.900 0.8249 U.7711 0.7026 0.6443 0.6059 0.5516 0.4523 0.4224 0.4044 0.3838

* Means that figures are too large in these entries.

۲.

219

TABLE IV

Values of U_r , V_r , $(4\gamma_1 - \beta_1) v$, $(\beta_2 - 4\gamma_2)v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ and E.F. which appear in the solutions of the treatment effect in designs with block size 4 (Even number of treatments)

r .	U _r	V _r	v	$(4\gamma_1-\beta_1)$	$(f_{2}-4\gamma_{2})v$	$(\beta_1\gamma_2-\beta_2\gamma_1)$	E.F.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	$\begin{array}{c} 1\\ -2\\ 0\\ 18\\ -63\\ 76\\ 256\\ -1,548\\ 3,353\\ 810\\ -31,232\\ 1,04,806\\ -1,13,535\\ -4,69,800\\ 56,26,560\\ -54,58,904\\ -24,37,247\\ 5,43,01,590\\ -17,26,85,232\\ 16,38,72,522\\ 85,75,32,721\\ -4,43,14,77,164\\ 8,66,87,16,192\\ 6,04,68,43,068\\ -94,00,52,18,655\end{array}$	$\begin{array}{c} 1\\ 1\\ -5\\ 16\\ -9\\ -95\\ 421\\ -704\\ -995\\ 9,441\\ -25,649\\ 12,640\\ 1,68,931\\ -7,09,199\\ 11,22,345\\ 19,14,016\\ -1,62,11,879\\ 4,19,26,945\\ -1,43,67,629\\ -29,88,65,664\\ 1,18,76,42,815\\ -1,74,63,71,279\\ -3,68,11,12,979\\ 27,73,64,58,880\\ -68,33,68,63,659\end{array}$	6 8 10 12 14 16 18 20 22 24 26 30 32 34 366 38 40 44 46 48 50	$\begin{array}{c} -120\\852\\-1,410\\-1,680\\30,856\\-1,07,264\\99,720\\7,24,080\\-38,63,288\\77,98,080\\70,56,104\\-10,65,96,112\\33,13,17,000\\-24,49,43,872\\-2,20,65,66,136\\10,64,78,05,680\\-19,40,91,45,840\\-25,63,31,24,160\\2,74,94,10,15,720\\-2,93,41,24,35,024\\4,48,01,22,34,216\\55,59,38,08,320\\-2,47,54,46,71,39,800\\ \end{array}$	$\begin{array}{c} -234\\ -704\\ 3,480\\ -8,480\\ -18.960\\ 3,248\\ 1,97,888\\ 6,30,160\\ 12,48,240\\ 35,97,616\\ -2,65,87,200\\ ,6.7383,472\\ -1,52,656\\ -64,88,17,200\\ 2,47,37,46,944\\ -3,24,75,38,288\\ -1,09,60,84,480\\ 7,16,46,71,66,556\\ -1,67,69,27,64,480\\ 2,15,62,15,65,684\\ 16,62,00,47,89,808\\ -59,10.54,76,72,4;32\\ -68,88,55,49,49,120\\ 2,80,26,79,05,87,600\\\\\\\\\\\\\\\\ $	261 2,176 18,180 1,51,840 12,68,228 1,11,81,924 8,84,75,140 74,54,05,920 6,22,39,14,196 51,98,38,35,200 4,34,18,80,01,972 36,20 51,81,59,744 3,02,90,16,80,49,300 25,29,95,90,08,94,461 2,11,31,25,50,05,32,072 17,64,96,90,63,22,65,920 1,46,92,67,28,69,86,46,756 12,29,63,83,86,15,99,70,560 * * * *	0.9016 0.8095 0.7537 0.6723 0.6125 0.5831 0.5323 0.4970 0.4668 0.4393 0.4155 0.4001 0.3657

* Entries in these columns are too large.

Ľ,

c

1

The layout of the design is obtained by developing the initial blocks, viz, (1, 2) and (1, 3), mod v.

The solution for t_i for the design is given by the expression

$$(5vt_i) = \sum_{u=1}^{p} (p - u + 1) (p - u + 2) Q_i^{u-1} - \frac{2v}{\beta_1} \sum_{u=1}^{p} U_{p-u} Q_i^{u-1}.$$

where

$$\beta_1 = -U_{p-1} + 3U_{p-2} - U_{p-3} - U_{p-4}$$

anđ

$$U_u = -U_{u-1} + 4U_{u-2} - U_{u-3} - U_{u-4}.$$

 $U_0 = 1, U_1 = -2, U_2 = 6, U_3 = -15, \text{ etc.}$

The different variances are given by

$$\operatorname{Var}(t_{i} - t_{i} \pm u) = \frac{2}{5\nu} \left\{ u(\nu - u) - \frac{2\nu}{\beta_{1}} (U_{p-1} - U_{i-u-1}) \right\} e^{u}$$
$$u = 1, \cdots p.$$

Tabulated values of U_u , β_1 , and E.F. have been presented in Table V.

3.12. Case 4b-k = 2, r = 4 (v is even)

The design is to be obtained from the same two initial blocks as when v is odd.

The solution for t_i is given by

$$5vt_{i} = \sum_{u=1}^{p} (p - u + 1)^{2} Q_{i}^{u-1} - \frac{2v}{\beta_{1}} \sum_{u=1}^{p} U_{p-u} Q_{i}^{u-1}$$

where U's, β_1 and variance expressions are the same as in the above case except with the different initial values for U's, *i.e.*,

$$U_0 = 1, U_1 = -1, U_2 = 4, U_3 = -9, U_4 = 25,$$
 etc.

Tabulated values of U_r , β_1 and E.F. have been presented in Table VI.

TABLE V

r	U _r	v	β,	E.F.
0	1	5	5	0.6250
1	. —2	· 7	-13	0 · 5417
2	6	9	- 34	0.4742
3	-15	11	-89	0.4246
4	40	13	233	0·3824
5.	-104	15	-610	0.3476
6	273	17	1,597	0.3184
7	-714	19	-4,181	0.2938
8	1,870	21	10,946	0.2726
9	-4,895	23	-28,657	0.2542
10	. 12,816	25	75,025	0.2382
11	-33,552	27	—1,96,418	0.2240
12	87,841	29	5,14,229	0 • 2107
13	-2,29,970	31 .	-13,46,269	••
14	6,02,070	33	35,24,578	
15		35	-92,27,465	••
16	41,26,648	· 37	2,41,57,817	`
17	-1,08,03,704	39	-6,33,45,986	••
18	2,82,84,465	41	16,55,80,141	••
1 9	7,40,49,690	43	-4,33,49,44,337	••
20	19,33,61,606	45	1,13,49,03,170	••
2 1		47	-2,97,12,15,073	
22	1,32,87,67,776	49	7,77,87,42,049	••
23	-3,47,87,59,200		••	• •

Values of U, and β_1 which appear in the solution of the treatment effect in designs with block size two and with initial blocks (1, 2) and (1, 3) and for odd and even number of treatment

TABLE VI and the second second

223

r	<i>U</i> ,	v	β_1	E.F.
0	1	6		0.5769
1	-1	8	21	0 · 506 9
2	4	10		0.4492
3	-9	12	144	0.4024
4	25	14	—377	0.3642
5	64	16	987	0.3324
6	169	18	-2,584	0.3056
7	441	20	6,765	0.2828
8	1,156	22	-17,711	0.2631
9	-3,025	24	- 46,368	0.2459
10	7,921	26	-1,21,393	0.2309
11	-20,736	28	3,17,811	0.2175
12	54,289	30	-8,32,040	0.2057
13	-1,42,129	32	21,78,309	•
14	3,72;100	- 34	-57,02,887	•••
15	-9,74,169	36	1,49,30,352	
16	25,50,409	38	-3,90,88,169	والمعالم ال
17	-66,77,056	40	10,23,34,155	••
18	1,74,80,761	42	-26,79,14,296	
19		44	70,14,08,733	
20	11,98,14,916	46	-1,83,63,11,903	
21	-31,36,29,521	4.8	4,80,75,26,976	
22	82,12,23,649	50	-12,58.62,69,025	
23	2,14,99,91,424	•••	••	••
24	5,62,87,50,624	•••	••	• •

Values of U, and β_1 which appear in the solution of the treatment effect in designs with block size two and with initial blocks (1, 2) and (1, 3) and for odd and even number of treatment

4

3.21. Case 5a-k=2, r=6

The layout of the design is obtained by developing the initial blocks, viz., (1, 2), (1, 3) and (1, 4), mod v both when v is odd or even. When v is odd

The solution for t_i for the design is given by

$$14\nu t_{i} = \sum_{u=1}^{p} (p - u + 1) (p - u + 2) Q_{i}^{u-1}$$
$$+ \frac{2\nu (\beta_{2} - 3\gamma_{2})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1}$$
$$+ \frac{2\nu (3\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}$$

where

$$\begin{split} \beta_{1} &= -U_{p-2} + 5U_{p-2} - 2U_{p-4} - U_{p-5} - U_{p-6}, \\ \gamma_{1} &= U_{p-1} - U_{p-3}, \\ U_{u} &= -U_{u-1} - U_{u-2} + 6U_{u-3} - U_{u-4} - U_{u-5} - U_{u-6}, \\ U_{0} &= 1, \ U_{1} = -2, \ U_{2} = 1, \ U_{3} = 7, \ \text{etc.}, \\ \beta_{2} &= -V_{p-1} + 5V_{p-2} - 2V_{p-3} - V_{p-4} - V_{p-5}, \\ \gamma_{2} &= V_{p} - V_{p-2}, \\ V_{u} &= -V_{u-1} - V_{u-2} + 6V_{u-3} - V_{u-4} - V_{u-5} - V_{u-6}, \\ V_{0} &= 1, \ V_{1} = 1, \ V_{2} = -4, \ V_{3} = 8, \ \text{etc.}, \end{split}$$

The different variances are given by

$$Var (t_{i} - t_{i \pm u}) = \frac{1}{7\nu} \left\{ u (\nu - u) + \frac{2\nu (\beta_{2} - 3\gamma_{2})}{(\beta_{1}\gamma_{2} - \gamma_{2}\gamma_{1})} (U_{p-2} - U_{p-u-2}) + \frac{2\nu (3\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} (V_{p} - V_{p-u-1}) \right\} \sigma^{2}$$

$$u = 1, 2, \cdots p.$$

Tabulated values of U_u , V_u , $(3\gamma_1 - \beta_1)\nu$, $(\beta_2 - 3\gamma_2)\nu$ and $(\beta_1\gamma_2 - \beta_2\gamma_1)$ have been presented in Table VII.

TABLE VII

Y

٢	U _r	V _r	υ	$(3\gamma_1-\beta_1)v$	(₂ - 3 y ₂) v	$(\beta_1\gamma_2 - \beta_2\gamma_1)$	E.F.
		[,		0.6794
0	1	1	5	- 25	95	13	0.5838
1	-2	1	7	-49	-98	. 49	0.5418
2	1	-4	9	360	- 414	214	0.5072
3	7	8	11	-737	1,914	947	0.4754
4	- 21	1	13	-169	2,886	4,197	0.4404
5	21	- 85	15	4,920	-3,660	17,668	0.4140
6	42	64	17	-12,665	27,612	81,769	0.3976
7	- 195	- 48	19	7,087	-52,326	3,61,379	0•376 7
8	292	- 251	21	49,980	- 882	15,97,106	0.3578
9	148	829	23	-1,71,933	2,82,302	70,58,377	0.3407
10	-1,652	-916	25	1,93,975	- 7,46,030	3,11,94,361	0.3251
.11	3,388	1,420	27	3,78,972	5,06,474	13,78,62,868	0•510 9
12	- 987	2,525	29	-19,90,241	24,93,594	60,92,82,227	••
13	-12,558	-12,131	31	32,81,814	-90,91,618	1,61,05,50,841	••
14	\$ 5,0 8 5	-3,576	33	20,48,574	1,11,36,642	12,26,80,61,908	••
15	- 24,411	62,364	35	-2,12,05,975	1,64,68,410	58,06,58,91,653	••
16	- 92,693	-1,36,763	37	4,33,83,721	-9,77,75,238	2,57,18,08,20,509	••
17	3,37,771	58,969	39	-58,94,733	17,07,52,530	11,84,30,05,56,619	
18	- 4,13,084	4,60,160	41	-19,38,00,727	3,89,55,166	50,19,91,75,30,783	••
19	4,78,961	-13,86,364	43	53,26,07,417	-93,33,45,702	2.21,85,20,89,98,261	••
20	8 0,00,69 0	13,57,993	45	- 42,35,13,540	2,20,06,21,230	9,70,62,30,66,42,302	••
21	-52,20,900	28,04,761	47	-1,49,06,66,335	-1,11,43,51,106	49,84,09,16,28,45,855	•• •
22	- 4,85,550	-1,28,63,304	49	5,84,00,93,273	-7,74,78,97,346	1,91,51,09,51,77,16,983	••
23	2,44,64,864	1,90,73,736	•••	••	••	••	••
24	-5,72,13,359	1,01,86,345	••	••	· ••	•	••
25	3,27,34,366	-10,92,16,295	••	••			
		i					

Values of U_r , V_r , $(3\gamma_1 - \beta_1) v$, $(\beta_2 - 3\gamma_2) v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ which appear in the solutions of treatment effects in designs with block size two with initial blocks (1, 2), (1, 3) and (1, 4) for number of treatments

22Ŝ

3.22. Case 5b-k=2, r=6 (v is even)

The solution for t_i is given by the expression

$$14\nu t_{i} = \sum_{\substack{\mathsf{w}=1\\ r}}^{p} (p-u+1)^{2} Q_{i}^{u-1} + \frac{2\nu (\beta_{2}-3\gamma_{2})}{(\beta_{1}\gamma_{2}-\beta_{2}\gamma_{1})} \sum_{\substack{\mathsf{w}=1\\ \mathsf{w}=1}}^{p-1} U_{\mathfrak{p}-\mathfrak{w}-1} Q_{i}^{\mathfrak{w}-1} + \frac{2\nu (3\gamma_{1}-\beta_{1})}{(\beta_{1}\gamma_{2}-\beta_{2}\gamma_{1})} \sum_{\substack{\mathsf{w}=1\\ \mathsf{w}=1}}^{p} V_{\mathfrak{p}-\mathfrak{w}} Q_{i}^{\mathfrak{w}-1}$$

where β 's, γ 's, U's, V's and variance expressions are the same as expressed above and the initial values in the difference equations are:

$$U_0 = 1$$
, $U_1 = -1$, $U_2 = -1$, $U_3 = 8$, etc.

 $V_0 = 1$, $V_1 = 1$, $V_2 = -2$, $V_3 = 5$, etc.

Tabulated values of quantities as indicated above have been presented in Table VIII.

3.3. Case 6—When k = 3, r = 6

This class of designs have been obtained by developing the initial blocks (1, 2, 3) and (1, 2, 4), mod v. The analysis of this type of design corresponds to the case k = 4, except with the minor changes as indicated.

The solution for t_i for the designs is obtained by multiplying the R.H.S. of the case 3 (a) and 3 (b) by 3/4. The variance will be 3/4th to that of k = 4 and the efficiency factor will be 8/9 times to that of k = 4.

4. Some Designs with Unequal Differences in the Initial Block

During the course of investigation it was seen that there is another class of designs, which are more efficient than the designs obtained in the previous section. The solution of designs with block size 3 with one initial block and of a design with block size 2 with two initial blocks is presented below.

4.1. Case 7

k = r = 3 with the initial block of the type (1, 2, 4) or (1, 3, 4) mod v. The analysis of this type of designs is the same as that of k = 2, r = 6, *i.e.*, Case Nos. 5 (a) and 5 (b) except for some minor changes.

TABLE VIII

r	U _r	V _r	υ	$(3\gamma_1 - \beta_1)\nu$	$(\beta_2 - 3\gamma_2)v$	$(\beta_1\gamma_2-\beta_2\gamma_1)$	E.F.
		,		,	-42	- 34	0.6273
0	1	1	6	72	-216	144	0.5600
1	-1	1	8.	264		638	0.5249
2	-1	-2	10	-270	1,010	2,816	0.4909
3	8	5	12	- 960	-1,536	12,292	0.4919
4	- 14	1	14	4,?68	-1,62		0.4333
5	, 0	- 20	16	-6,672	14,2.,6	55,008	0.4095
6	6 3	49	18	- 6,588	-28,6 6	2,43,240	0.3869
7	~153	- 27	20	55,060	- 860	10,74,392	0.3673
	97	- 146	22	1,12,002	1,57,102	47,48,258	0.3073
9	440		24	6,912	-4,14,720	2,09,84,832	0.3491
10	-1,504	-527	26	-5;66,670	2,78,590	9 27,42,050	0.3178
11	1,735	- 832	28	-15,28,604	14,04,340	40,98,71,672	0.3042
12	2,401	4,369	30	11,17,080	-51,01,680	1,81,14,19,808	0.2042
18	- 13 5 15	-7,007	32	48,05,664	62,19,936	8,00,55,34,272	
14	22,527	-2,162	34	-1,8),86,742	93,85,238	35,38,03,01,534	
15	4,752	36,261	36	2 29,57,632	- 5, 2,36,096	1,56,36,25, +2,968	••
16	-1,11,182	- 79,161	38	3,00,53,250	9,62,81,474	6,91,04,12,10,686	•••
17	2,51,000	3 3,388	40	-19,01,27,400	- 5,3 ,35,767	30,54,04,20,02,438	•••••
18	-1,22,689	2,68,129	42	34,15,91,544	-33,02,23,152	1,44,74,50,28,83,568	
19	- 8,09,137	-8,03,515	44	4,88,12,588	1,24,54,79,708	5,96,59,62,04,02,662] ••
20	25,21,729	7,80,766	46	-1,77,82,7.,173	-61,93,96,762	26,36,26,32,94,41,60 2	••
21	- 25,93,296	16,41,025	48	4,30,42,68,288	-4,42,35,69,408	1,49,70,91,35,27,36,096	
22	- 48,00,384	- 74,65,247	50	-2,42,64,28,650	1,42,48,30,77,552	4, 44,90,07,70,86,28,162	• •
23	2,32,14,880	-1,10,10,8 6	••	••	••	••	
24	- 3, 5,54,175	60,55,201	••		••		
25	-1,55,72,305	- 6,34 ,7 5, 775	••		•• ` `	••	

 $T_{\mu}^{\mu\nu} \cong \{\mu_{\mu}, \mu_{\nu}\}_{\nu}$

Values of U_r , V_r , $(3\gamma_1 - \beta_1) v$, $(\beta_2 - 3\gamma_2) v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ which appear in the solutions of treatment effects in designs with block size two with initial blocks (1, 2), (1, 3) and (1, 4) for even number of treatments

Solution of t_i is obtained by multiplying the R.H.S. of the solution in the case when k = 2 and r = 6 by 3/2 and the same change for the variance.

For this case, Tables VII and VIII have to be used for the analysis. Table (A) below indicates how the efficiency factor differs from the case when k = 3 with the initial block (1, 2, 3).

	11000 11	, ,-	•
 v	I	II ·	
5	0.8148	0.9059	
10	0.5498	0.6997	
15	0 ·4088	0.5871	
20	0.3262	0-5159	
25	0.2710	0•4543	
30	0 2257	0.4056	

TABLE A

Col. I corresponds to the designs having the initial block of the type (1, 2, 3) and Col. II corresponds to the designs with the initial block of the type (1, 2, 4) or $(1, 3, 4) \mod \nu$.

4.21. Case 8 a—When k = 2 and r = 4, v = 2p + 1, b = 2 v

The designs are obtained by developing two initial blocks, viz., (1, 3) and $(1, 4) \mod v$. This class of designs are also partially balanced incomplete block design with p number of associate classes with the following parameters:

$$\lambda_i = 1 \ (i = 2, 3)$$

= 0 (i = 1, 4, \dots p)
$$n_i = 2 \ (i = 1, \ d_i + p).$$

The solution for t_i for the design is given by

$$13vt_i = \sum_{i=1}^{p} (p - u + 1) (p - u + 2) Q_i^{u-1}$$

$$+ \frac{2\nu (3\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p-1} U_{p-u-1}Q.^{u-1}$$
$$+ \frac{2\nu (\beta_{2} - 3\gamma_{2})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p} V_{p-u}Q.^{n-1}$$

where

$$\beta_{1} = 3U_{p-3} - U_{p-4} - U_{p-5} - U_{p-6}$$

$$\gamma_{1} = U_{p-1} - U_{p-3}$$

$$U_{u} = -U_{u-1} + 4U_{u-3} - U_{u-5} - U_{u-6}$$

and

$$U_{0} = 1, \quad U_{1} = -2, \quad U_{2} = 2, \quad U_{3} = 2, \text{ etc,}$$

$$\beta_{2} = 3V_{p-2} - V_{p-3} - V_{p-4} - V_{p-5},$$

$$\gamma_{1} = V_{p} - V_{p-2},$$

$$V_{u} = -V_{u-k} + 4V_{u-3} - V_{u-5} - V_{u-6}$$

and

2

$$V_0 = 1$$
, $V_1 = 1$, $V_2 = -3$, $V_3 = 6$, etc.

The different variances are given by

$$\operatorname{Var} (t_{i} - t_{i} \pm u)$$

$$= \frac{2}{13\nu} \left\{ u (\nu - u) + \frac{2\nu (3\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2} + 1)} (U_{p-2} - U_{p-u-2}) + \frac{2\nu (\beta_{2} - 3\gamma_{2})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} (V_{p-1} - V_{p-u-1}) \right\} \sigma^{2}$$

$$u = 1 \cdots p.$$

Tabulated values of U_u , V_u , $(3\gamma_1 - \beta_1) v$, $(\beta_2 - 3\gamma_2) v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ and E.F. have been presented in Table IX.

4.32. Case 8b—When k = 2 and r = 4, v = 2p (p is not a multiple of 3), b = 2v

The primary parameters and recurrence relations are same as above. The solution for t_i for the design is given by

22**9**0

TABLE IX

Values of U	V_r (3 γ_1	$(-\beta_1) v$, $(\beta_2 - 3\gamma_2) v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ which appear in the solutions of treatment effects	i in
• •		designs with block size two with initial block $(1, 3)$ and $(1, 4)$	

3

× -

r	Ur '	V _r	v	$(3\gamma_1-\beta_1)$	$(\beta_2 - 3\gamma_2)v$	$(\beta_1\gamma_2 - \beta_2\gamma_1)$	E.F.
	<u> </u>	, ,]
0	⁷ 1	\mathbf{l}_{i}	5	- 30	75	6	0.6522
. i	-2	1	7	0	- 91	13	0.5417
2	2	- 3	9	171	-126	37	0.5092
5	2	6	11	~ 473	770	10J ,	0-4866
4	-10	-2	13	520	1,495	325	0.4688
5	17	-11	15	570	750	964	0.4498
6	8	33	17	-3,468	3,893	2,857	0.4314
, 7	-32	- 39	19	6,555	- 12,578	8,473	0.4144
8	96	-8	21	- 3,549	16,926	25,129	0.3955
9	-120	136	23	- 14,812	3,565	74,521	0.38.3
10	-15	-279	25	48,170	- 68,450	2,20,996	0.3739
ĩi	390	225	27	- + 6,312	1,53,441	6,55,381	0.3553
12	-830	325	29	-7,69	-1,34,270	19,43,581	0.3440
13	706	-1,394	31	2,43,939	-2,00,446	57,63,829	
14	878	2,166	33	- 5,57,040	9,31,821	1,70,93,053	
15	-4,063	- 723	35	5,08,690	-15,4 6 ,090	5,06,90,692	
16	6,512	- 4,299	37	6,45,724	5,68,505	15,03,26,929	
17	- 2,560	12,913	39	-30,43,435	37,64,670	44,5×,05,42 5	
18	-13,568	-14,736	41	55,26,103	-1,07,47,330	1,18,17,14,369	
19	38,082	- 5,232	43	-23,20,452	12,97,88,217	3,92,06,89,777	
20	- 45,087	55,441	45	-1,22,71,950	45,10,710	11,62,70,90,308	
21	-11,634	-1,08,883	47	3,62,77,232	- 5,26,37,6 3	34,48,09,80,829	
22	1,59,810	79,821	49	-4,52,22,541	10,85,51,170	1,02,25,58,53,141	
23	-3,24,0 0	1,43,766	••		••	••	
24	2,53,030	- 5,29,250	••		••	••	
25	8,93,265	8,28,325	• •		••	- •	

e.

$$13vt_{i} = \sum_{u=1}^{p} (p-u+1)^{2} Q_{i}^{u-1} + \frac{2v (3\gamma_{1}-\beta_{1})}{(\beta_{1}\gamma_{2}-\beta_{2}\gamma_{1})} \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1} + \frac{2v (\beta_{2}-3\gamma_{2})}{(\beta_{1}\gamma_{2}-\beta_{2}\gamma_{1})} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}$$

and the initial values of U's and V's are

 $U_0 = 1, U_1 = -1, U_2 = 0, U_3 = 4,$ etc.

 $V_0 = 1, V_1 = 1, V_2 = -1, V_3 = 3,$ etc.

The different variances are the same as given in Case 8 a.

All the columns as in Case 8a have also been presented in Table X.

4.3. Case 9—When
$$k = 2$$
 and $r = 4$. $v = 2$ $p + 1$, $b = 2$ v

The designs are obtained by developing the initial block of the type (1, 2) and $(1, 4) \mod v$. This class of designs are partially balanced incomplete block designs with p associate classes with the following parameters:

$$\lambda_i = 1 \ (i = 1, 3)$$

= 0 $(i = 2, 4, \dots p)$
 $n_i = 2 \ (i = 1, \dots p).$

The solution for t_i is given by

$$10 vt_{i} = \sum_{u=1}^{p} (p - u + 1) (p - u + 2) Q_{i}^{u-1}$$
$$+ \frac{2v (\beta_{2} - 2\gamma_{2})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p-1} U_{p-u-1} Q_{i}^{u-1}$$
$$+ \frac{2v (2\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} \sum_{u=1}^{p} V_{p-u} Q_{i}^{u-1}$$

where

$$\beta_1 = -U_{p-2} + 4U_{p-3} - 2U_{p-4} - U_{p-6},$$

$$\gamma_1 = U_{p-1} - U_{p-3},$$

|--|

Values of U_r , V_r , $(3\gamma_1 - \beta_1)v$, $(\beta_2 - 3\gamma_2)v$, $(\beta_1r_2 - \beta_2r_1)$ and E.F. which appear in the solutions of treatment effects in designs with block size two with initial blocks (1, 3) and (1, 4)

¥	«r	vr	υ	$(3\gamma_1 - \beta_1)v$	$(\beta_2-3\gamma_2)v$	$(\beta_1\gamma_2-\beta_2\gamma_1)$	E.F.
0	1	1	8	152	- 64	21	0.5069
1	-1	1	10	-240	320	64	0.5000
2	0	-1	14	109	182	559	0.4588
3	4	3	16	-2, 6 56	1,808	1,659	0.4498
4	- \$	0	20	3,520	6,400	14,592	0.4062
5	7	- 5	22	- 17,886	3,256	43,273	9.3907
6	9.	15	2 6	-13,260	63,310	3,80,575	0.3627
7	-40	-15	.28	76,076	-46,592	11,28,621	0.8501
8	64	- 7	32	-2,88,352	4,08,320	99,25,797	
	- 24	64	34	- 79,764	-6,21,622	2,94, 5,671	
10	-135	·	38	-24,62,894	17,89,496	25,87,80,519	
· 11	3 75	81	40	20,20,720	-46,02,880	76,80,29,504	
12	- 44 0	175	44	-1,43,73,656	33,16,852	6,75,17,56,371	
13	-124	- 629	46	2,29,60,716	-2,34,25,424	20,02,28,23,927	
14	1,584	896	50	5,70,68,400	-2,87,40,800	1,76,09,31,48,736	
15	- 3, 195	141			••	••	
16	2,449	-2,337	••		••		
17	3,952	5,665	• •			••	
18	-16,128	- 5,775	••				
19	24,464	- 3,840					
20	-7,055	25,745	••		••		
21	-56,721	- 46,367	••			••	· · ·
22	1,48,176	27,679	••		••		
23	-1,64,220	75,411	• •	· · ·	••	••	
24	-71,000	-2,51,264	••				••
26	€,46,295	3,40,075					

£

$$U_u = -U_{u-2} + 4U_{u-3} - U_{u-5} - U_{u-6},$$

 $U_0 = 1, \ U_1 = -1, \ U_2 = -1, \ U_3 = 5, \ \text{etc.}$

and

$$\begin{aligned} \beta_{2} &= -V_{p-1} + 4V_{p-2} - 2V_{p-3} - V_{p-5}, \\ \gamma_{2} &= V_{p} - V_{p-2}, \\ V_{u} &= -V_{u-2} + 4V_{u-3} - V_{u-5} - V_{u-6}, \\ V_{0} &= 1, \ V_{1} = 1, \ V_{2} = -2, \ V_{3} = 2, \ V_{4} = 5, \text{ etc} \end{aligned}$$

The different variances are given by

$$\begin{aligned} \operatorname{Var}(t_{i} - t_{i \pm u}) \\ &= \frac{1}{5\nu} \left\{ u(\nu - u) + \frac{2\nu (\beta_{2} - 2\gamma_{2})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} (U_{p-2} - U_{p-u-2}) \right. \\ &+ \frac{2\nu (2\gamma_{1} - \beta_{1})}{(\beta_{1}\gamma_{2} - \beta_{2}\gamma_{1})} (V_{p-1} - V_{p-u-1}) \right\} \sigma^{2} \\ &= 1, \ 2, \cdots p. \end{aligned}$$

Tables for U_u , V_u , $(\beta_2 - 2\gamma_2) v$, $(2\gamma_1 - \beta_1) v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ and E.F. have been calculated for different v's and presented in Table XI.

In order to compare the different designs of the type having the same primary parameters, the following table has been prepared.

The above table clearly shows the E.F. for the initial blocks (1, 2) (1, 4) is greater than with the initial block (1, 2) (1, 3) and E.F. for the initial block (1, 3) (1, 4) is greater than that of (1, 2) (1, 4). In certain cases E.F.'s are same for two different types which means that one case is reducible to the other one.

			-
Number of treatments	E.F. of the designs with the initial blocks (1, 2) and (1, 3)	E.F. of the designs with the initial blocks (1, 2) and (1, 4)	E.F. of the designs with the initial blocks (1, 3) and (1, 4)
5	0.6250	0.6522	0.6522
6	0.5769	_	·
7	0 • 5414	0.5417	0 ·5417
8	0.5096	_	0.5096
9	0.4742	0.5092	0.5092
10	0.4492	 .	0. 5000
11	0.4246	0.4866	0.4866
12	0.4024	<u> </u>	
13	0.3824	0.4576	0 · 4688
14	0.3642		0.4588
15	0.3476	0.4333	0.4498
16	0.3324	_	0.4498
17	0.3184	0 ·4105	0.4314
18	0.3056	—	
19	0.2938	0.3843	0·4 144
20	0.2828	—	0.4062
21	0.2726	0.3730	0.3984
22	0 ·2631	-	0.3903
23	0.2542	0.3547	0·38 03
24	0.2459	_	<u>,</u>
25	0.2382	0.3378	0.3739
26	0·2309	. —	0 ·3627
27	0.2240	0.3242	0.3553
28	0.2175	—	0.3501
29	0.2107	0.3110	0.3440
30	0.2057	—	

Table for efficiency factor (k = 2, r = 4)

(-) means designs does't exist.

·.	31 _e	2' r	Z'	$(2\gamma_1 - \beta_1)$	$(\beta_2 - 2\gamma_2)v$	$(\beta_1\gamma_2-\beta_2\gamma_1)$	E. F .
Ì					· · · · · · · · · · · · · · · · · · ·	ı	
0	1	1	5	-5	4 5	6	0.6522
1	-1	-1	7	- 63	14	13	0.5417
8	-1	-2	9	153	-234	37	0.5092
3	5	2.	11	1(3-2	109	0.4866
4	-4	5	13	- 663	364	313	0.45 6
5	8	-11	15	1,095	-2,010	905	0.4333
ō. İ	24	4	· 17	527	2,008	2,117	0.4108
7	· 12	- 28	-19	- 5,111	4,28	7,561	0•3843
8	- 51	- 51	21	6,027	-13,776	21,853	0 3 7 3 0
g	111	- 3	23	8,073	8,326	63,157	0.3547
0	-17	154	25		33 950	1,825,25	0.3378
1	2 95	-218	27	26,811	-82.728	5,27,50)	0-3242
3	488	-119	29	70,441	18,212	15,24,529	0.3110
3	128	809	31	-1,97 408	2 , 45 ,582	46,13,872	
٤	-1,600	- 856	33	86,031	- 4,48,338	1,27,33,489	
5 .	2,008	-1,064	35	5,19,785	-94,789	3,68,00,465	Ι.
8 '	1,641	4,057	37	-10,95,237	16 01,65 6	10,63,55,317	· · ·
7	8,241	-2,951	39	41,457	- 22,03 266	30,73,72,573	
8	7,503	- 7,23	41	34,42,729	16,87,642	£ 88,83,23,221	
9	12.669	19,434	43	- 54,97,077	96,50,576	2,56,73,01,757	••
0	-40,508	-7,667	45	-23,72,535	96,53,220	6,94,37,89,189	
1	23,576	- 44,771.	47	2,11,85,291	-1,55,04,36)	21,80,47,15,944	
2	83.516	88,684	49	-2,52,09,373	5,43,95,831	63,10,54,87,512	· · ·
3	-1,91,512	-2,379		••	••		
4	43,793	-2,52,764					
б	4,89,331	3,82,452					

TABLE XI Values of U_r , V_r , $(2\gamma_1 - \beta_1)v$, $(\beta_2 - 2\gamma_2)v$, $(\beta_1\gamma_2 - \beta_2\gamma_1)$ and E.F. which appear in the solutions of treatment effects in designs with block size two with initial blocks (1, 2) and (1, 4)

5. How to Use Tables

An illustration with v = 15 and k = 3.

For
$$v = 15$$
, $p = \frac{v-1}{2} = 7$, $k = r = 3$.

The solution for t_i can be written with the help of Table I, and is given by the equation:

$$4\nu t_{i} = \sum_{u=1}^{7} (8-u) (9-u) Q_{i}^{u-1} - \frac{2\nu}{\beta_{1}} \sum_{u=1}^{7} U_{7-u} Q_{i}^{u-1}$$

where $\beta_1 = -7953$ for v = 15.

The value of β_1 has been obtained from Col. II entered against $\nu = 15$ and substituting the values of $U_6 \cdots U_0$, we have $(4 \times 15 \times 2651)$ $t_i = 2651 \{56Q_i + 42Q_i^1 + 30Q_i^2 + 20Q_i^3 + 12Q_i^4 + 6Q_i^5 + 2Q_i^6\} + 2 \times 5 \{2296Q_i - 615Q_i^1 + 165Q_i^2 - 44Q_i^3 + 12Q_i^4 - 3Q_i^5 + Q_i^6\}$ or $159060 t_i = 171416Q_i + 105192Q_i^1 + 81180Q_i^2 + 52580Q_i^3 + 31932Q_i^4 + 15876Q_i^5 + 5312Q_i^6$.

The values of U's have been obtained from Col. I of the table. Thus the above expression gives the solution of t_i which can further be simplified. The different variances can be obtained by using either the formula or directly from the above expression.

6. SUMMARY

In an attempt to get incomplete block designs for each and every number of treatments the problem of analysis of circular designs was introduced by Das and was solved for the designs with the blocks of size two has been solved for plots of sizes three and four. Necessary tables required for obtaining the intra-block analysis readily have also been prepared and presented. A special class of designs with blocks of two plots and having more than one initial block has been investigated. Another class of more efficient type of designs with block size three has also been investigated.

7. ACKNOWLEDGEMENT

We are grateful to Dr. G. R. Seth, Statistical Adviser, I.C.A.R., for providing us an opportunity to conduct the research.

8. References

I. Bose, R. C.

- .. "On the construction of balanced incomplete block designs," Ann. Eugen., 1939, 9.
- 3. Chopra, A. S.

6. Kempthorne, O.

- Circular Designs and Designs Developable from Initial Blocks, Unpublished thesis, I.A.R.S., New Delhi.
- 4. Cochran, W. G. and *Experimental Designs*, John Wiley & Sons, Inc., Cox, G. M. New Delhi, 1957.
- 5. Das, M. N. . "Circular designs," Jr. Ind. Soc. of Agri. Stat., 1960, 12 (1).
 - .. "A class of experimental designs using block of two plots," Ann. Math. Stat., 1953, 24, 76-85.
- 7. Nair, K. R. and Rao, C. R. "A note on partially balanced incomplete block designs," Sci. and Cult., 1942, 7.

8. Rao, C. R.

.. "General method of analysis for incomplete block designs," J.A.S.A., 1947, 42.